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ABSTRACT 

 In this paper the   shrinkage estimator between MLE estimator and Bayes estimator. Also  the shrinkage 

estimator between Bayes estimator and MLE estimator, and   shrinkage estimator between    and     for estimating 

the parameter of exponential distribution of life time is presented. Through simulation study the performance of this 

estimator was compared to the standard Bayes and MLE estimator with respect to the mean square error (MSE) . We found 

the    shrinkage estimator between    and    is the best estimator. 
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INTRODUCTION 

 One of the most useful and widely exploited models is the exponential distribution. Epstein,(1984) remarks that 

the exponential distribution plays as important role in life experiments as that played by the normal distribution in 

agricultural experiments. Maximum likelihood estimation has been the widely used method to estimate the parameter of an 

exponential distribution. Lately Bayes method has begun to get the attention of researchers in the estimation procedure. 

The only statistical theory that combines modeling inherent uncertainty and statistical uncertainty is Bayesian statistics. 

The theorem of Bayes provides a solution on how to learn from data. Related to survival function and by using Bayes 

estimator, Elli and Rao,(1986), estimated the shape and scale parameters of the Weibull distribution by assuming a 

weighted squared error loss function. They minimized the corresponding expected loss with respect to a given posterior 

distribution.[1] 
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 The marginal probability density function of   given the data 
1 2( , ,..., )nt t t is   
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 The conditional probability density function of   given the data 
1 2( , ,..., )nt t t is given by  
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By using squared error loss function    
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 Where      and     ,then         

 In this paper, we proposed   shrinkage estimator between MLE estimator and Bayes estimator and calculate  

the shrinkage estimator between Bayes estimator and MLE estimator, and then   shrinkage estimator between    and   
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 Let , then this implies that the value of  which minimizes  is 
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 Then the shrinkage estimator between MLE estimator and Bayes estimator is 

  

Shrinkage Estimator between Bayes Estimator and MLE Estimator 
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 Then the shrinkage estimator between Bayes estimator and MLE estimator is 

  

Shrinkage Estimator between    and    

  

  

 To get   , we can find ,  ,    and   such that  
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Simulation Study 

 In this simulation study, we have chosen  n=30,60,90 to represent small, moderate and large sample size, several 

values of parameter  =0.5, 1.1, 1.5 .The number of replication used was R=1000.  

 The simulation program was written by using Matlab program. After the parameter was estimated , mean square 

error (MSE) is calculated to compare the methods of estimation, where  MSE  
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 The results of the simulation study are summarized and tabulated in Table 1 for the  MSE of the five estimators 

for all sample sizes and values respectively.  

 The order of the estimator is from the best (smallest MSE) to the worst (largest MSE). It is obvious from these 

tables, shrinkage estimator between   and   , is the best estimator in most of the cases. 

Table 1: The Ordering of the Estimators with Respect to MSE 

 

n 
      

30 

0.5 0.0114 0.0102 0.0104 0.0105 0.0102 

1.1 0.0113 0.0101 0.0114 0.0119 0.0100 

1.5 0.0111 0.0110 0.0115 0.0116 0.0109 

60 

0.5 0.0121 0.0110 0.0112 0.0115 0.0108 

1.1 0.0119 0.0109 0.0111 0.0112 0.0107 

1.5 0.0119 0.0110 0.0110 0.0109 0.0107 

90 

0.5 0.0117 0.0118 0.0108 0.0108 0.0107 

1.1 0.0116 0.0162 0.0108 0.0107 0.0105 

1.5 0.0115 0.0155 0.0107 0.0107 0.0105 
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CONCLUSIONS 

The new estimator  that is shrinkage estimator between    and   is the best estimator when compared to 

standard Bayes, MLE estimator,  and other estimators. We can easily conclude that MSE shrinkage estimator between    

and    decrease with an increased of sample size. 
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